MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. 6162 Aluminum

Both EN AC-51300 aluminum and 6162 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
68
Elongation at Break, % 3.7
6.7 to 9.1
Fatigue Strength, MPa 78
100 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
290 to 300
Tensile Strength: Yield (Proof), MPa 110
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
620
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 110
190
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
50
Electrical Conductivity: Equal Weight (Specific), % IACS 100
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 87
510 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 20
29 to 30
Strength to Weight: Bending, points 28
36
Thermal Diffusivity, mm2/s 45
79
Thermal Shock Resistance, points 8.6
13

Alloy Composition

Aluminum (Al), % 91.4 to 95.5
96.7 to 98.9
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.55
0 to 0.5
Magnesium (Mg), % 4.5 to 6.5
0.7 to 1.1
Manganese (Mn), % 0 to 0.45
0 to 0.1
Silicon (Si), % 0 to 0.55
0.4 to 0.8
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15