MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. 7005 Aluminum

Both EN AC-51300 aluminum and 7005 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
70
Elongation at Break, % 3.7
10 to 20
Fatigue Strength, MPa 78
100 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
200 to 400
Tensile Strength: Yield (Proof), MPa 110
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
610
Specific Heat Capacity, J/kg-K 910
880
Thermal Conductivity, W/m-K 110
140 to 170
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
35 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 9.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 87
65 to 850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
47
Strength to Weight: Axial, points 20
19 to 38
Strength to Weight: Bending, points 28
26 to 41
Thermal Diffusivity, mm2/s 45
54 to 65
Thermal Shock Resistance, points 8.6
8.7 to 18

Alloy Composition

Aluminum (Al), % 91.4 to 95.5
91 to 94.7
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.55
0 to 0.4
Magnesium (Mg), % 4.5 to 6.5
1.0 to 1.8
Manganese (Mn), % 0 to 0.45
0.2 to 0.7
Silicon (Si), % 0 to 0.55
0 to 0.35
Titanium (Ti), % 0 to 0.2
0.010 to 0.060
Zinc (Zn), % 0 to 0.1
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0 to 0.15
0 to 0.15