MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. 707.0 Aluminum

Both EN AC-51300 aluminum and 707.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
70
Elongation at Break, % 3.7
1.7 to 3.4
Fatigue Strength, MPa 78
75 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
270 to 300
Tensile Strength: Yield (Proof), MPa 110
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 600
600
Specific Heat Capacity, J/kg-K 910
880
Thermal Conductivity, W/m-K 110
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
37
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 9.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 87
210 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
47
Strength to Weight: Axial, points 20
26 to 29
Strength to Weight: Bending, points 28
32 to 34
Thermal Diffusivity, mm2/s 45
58
Thermal Shock Resistance, points 8.6
12 to 13

Alloy Composition

Aluminum (Al), % 91.4 to 95.5
90.5 to 93.6
Chromium (Cr), % 0
0.2 to 0.4
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.55
0 to 0.8
Magnesium (Mg), % 4.5 to 6.5
1.8 to 2.4
Manganese (Mn), % 0 to 0.45
0.4 to 0.6
Silicon (Si), % 0 to 0.55
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.1
4.0 to 4.5
Residuals, % 0 to 0.15
0 to 0.15