MakeItFrom.com
Menu (ESC)

EN AC-51400 Aluminum vs. ASTM Grade HP Steel

EN AC-51400 aluminum belongs to the aluminum alloys classification, while ASTM grade HP steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51400 aluminum and the bottom bar is ASTM grade HP steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 71
140
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.4
5.1
Fatigue Strength, MPa 85
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 190
490
Tensile Strength: Yield (Proof), MPa 120
260

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.1
5.8
Embodied Energy, MJ/kg 150
82
Embodied Water, L/kg 1170
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
21
Resilience: Unit (Modulus of Resilience), kJ/m3 110
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 28
17
Thermal Diffusivity, mm2/s 46
3.2
Thermal Shock Resistance, points 8.6
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.5 to 95.5
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0
24 to 28
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
29.2 to 42.7
Magnesium (Mg), % 4.5 to 6.5
0
Manganese (Mn), % 0 to 0.45
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0