MakeItFrom.com
Menu (ESC)

EN AC-51500 Aluminum vs. 5449 Aluminum

Both EN AC-51500 aluminum and 5449 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51500 aluminum and the bottom bar is 5449 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 5.6
4.0 to 17
Fatigue Strength, MPa 120
78 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 280
210 to 330
Tensile Strength: Yield (Proof), MPa 160
91 to 260

Thermal Properties

Latent Heat of Fusion, J/g 430
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
35
Electrical Conductivity: Equal Weight (Specific), % IACS 88
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 9.0
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
12 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 190
60 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 29
22 to 33
Strength to Weight: Bending, points 36
29 to 39
Thermal Diffusivity, mm2/s 49
56
Thermal Shock Resistance, points 13
9.4 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.8 to 93.1
94.1 to 97.8
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.25
0 to 0.7
Magnesium (Mg), % 4.7 to 6.0
1.6 to 2.6
Manganese (Mn), % 0.4 to 0.8
0.6 to 1.1
Silicon (Si), % 1.8 to 2.6
0 to 0.4
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.070
0 to 0.3
Residuals, % 0 to 0.15
0 to 0.15