MakeItFrom.com
Menu (ESC)

EN AC-71100 Aluminum vs. 2024 Aluminum

Both EN AC-71100 aluminum and 2024 aluminum are aluminum alloys. They have 82% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN AC-71100 aluminum and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.1
4.0 to 16
Fatigue Strength, MPa 150
90 to 180
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 260
200 to 540
Tensile Strength: Yield (Proof), MPa 230
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 490
390
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 580
640
Melting Onset (Solidus), °C 520
500
Specific Heat Capacity, J/kg-K 860
880
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
30
Electrical Conductivity: Equal Weight (Specific), % IACS 97
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.9
3.0
Embodied Carbon, kg CO2/kg material 7.4
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1010
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 360
70 to 1680
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
46
Strength to Weight: Axial, points 25
18 to 50
Strength to Weight: Bending, points 31
25 to 49
Thermal Shock Resistance, points 12
8.6 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 78.7 to 83.3
90.7 to 94.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
3.8 to 4.9
Iron (Fe), % 0 to 0.3
0 to 0.5
Magnesium (Mg), % 0.2 to 0.5
1.2 to 1.8
Manganese (Mn), % 0 to 0.15
0.3 to 0.9
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Titanium (Ti), % 0 to 0.15
0 to 0.15
Zinc (Zn), % 9.0 to 10.5
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15