MakeItFrom.com
Menu (ESC)

EN AC-71100 Aluminum vs. C70620 Copper-nickel

EN AC-71100 aluminum belongs to the aluminum alloys classification, while C70620 copper-nickel belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-71100 aluminum and the bottom bar is C70620 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 27
46
Tensile Strength: Ultimate (UTS), MPa 260
300 to 570

Thermal Properties

Latent Heat of Fusion, J/g 490
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 580
1120
Melting Onset (Solidus), °C 520
1060
Specific Heat Capacity, J/kg-K 860
390
Thermal Expansion, µm/m-K 22
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 7.4
3.4
Embodied Energy, MJ/kg 140
51
Embodied Water, L/kg 1010
300

Common Calculations

Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 25
9.3 to 18
Strength to Weight: Bending, points 31
11 to 17
Thermal Shock Resistance, points 12
10 to 20

Alloy Composition

Aluminum (Al), % 78.7 to 83.3
0
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 0 to 0.1
86.5 to 90
Iron (Fe), % 0 to 0.3
1.0 to 1.8
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 7.5 to 9.5
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 9.0 to 10.5
0 to 0.5
Residuals, % 0
0 to 0.5