MakeItFrom.com
Menu (ESC)

CC140C Copper vs. AISI 420F Stainless Steel

CC140C copper belongs to the copper alloys classification, while AISI 420F stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is AISI 420F stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
230
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 340
740
Tensile Strength: Yield (Proof), MPa 230
430

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
760
Melting Completion (Liquidus), °C 1100
1440
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 310
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 78
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 41
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
480
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
27
Strength to Weight: Bending, points 12
23
Thermal Diffusivity, mm2/s 89
6.8
Thermal Shock Resistance, points 12
27

Alloy Composition

Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0.4 to 1.2
12 to 14
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
82.4 to 87.6
Manganese (Mn), % 0
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35