MakeItFrom.com
Menu (ESC)

CC140C Copper vs. ASTM A414 Steel

CC140C copper belongs to the copper alloys classification, while ASTM A414 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is ASTM A414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
110 to 180
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
15 to 26
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 340
360 to 590
Tensile Strength: Yield (Proof), MPa 230
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 310
49 to 50
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
7.2 to 7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 78
8.3 to 8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.2
Density, g/cm3 8.9
7.8 to 7.9
Embodied Carbon, kg CO2/kg material 2.6
1.5 to 1.6
Embodied Energy, MJ/kg 41
20 to 22
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
69 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 220
100 to 330
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
13 to 21
Strength to Weight: Bending, points 12
14 to 20
Thermal Diffusivity, mm2/s 89
13
Thermal Shock Resistance, points 12
11 to 17