MakeItFrom.com
Menu (ESC)

CC140C Copper vs. EN 1.3961 Alloy

CC140C copper belongs to the copper alloys classification, while EN 1.3961 alloy belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is EN 1.3961 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
31
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 340
450
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Melting Completion (Liquidus), °C 1100
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 17
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
25
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 41
66
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
130
Resilience: Unit (Modulus of Resilience), kJ/m3 220
250
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10
15
Strength to Weight: Bending, points 12
16
Thermal Shock Resistance, points 12
130

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.4 to 1.2
0 to 0.25
Copper (Cu), % 98.8 to 99.6
0
Iron (Fe), % 0
60.7 to 65
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
35 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020