MakeItFrom.com
Menu (ESC)

CC140C Copper vs. CC332G Bronze

Both CC140C copper and CC332G bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 83% of their average alloy composition in common.

For each property being compared, the top bar is CC140C copper and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
130
Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 340
620
Tensile Strength: Yield (Proof), MPa 230
250

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1100
1060
Melting Onset (Solidus), °C 1040
1010
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 310
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
11
Electrical Conductivity: Equal Weight (Specific), % IACS 78
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
55
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
270
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 10
21
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 89
12
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
80 to 86
Iron (Fe), % 0
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
1.5 to 4.0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5