MakeItFrom.com
Menu (ESC)

CC140C Copper vs. C22600 Bronze

Both CC140C copper and C22600 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is C22600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
2.5 to 33
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
42
Tensile Strength: Ultimate (UTS), MPa 340
330 to 570
Tensile Strength: Yield (Proof), MPa 230
270 to 490

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1100
1040
Melting Onset (Solidus), °C 1040
1000
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 310
170
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
40
Electrical Conductivity: Equal Weight (Specific), % IACS 78
42

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
14 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 220
330 to 1070
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10
11 to 18
Strength to Weight: Bending, points 12
12 to 18
Thermal Diffusivity, mm2/s 89
52
Thermal Shock Resistance, points 12
11 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
86 to 89
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Zinc (Zn), % 0
10.7 to 14
Residuals, % 0
0 to 0.2