MakeItFrom.com
Menu (ESC)

CC140C Copper vs. C52100 Bronze

Both CC140C copper and C52100 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
41
Tensile Strength: Ultimate (UTS), MPa 340
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1100
1030
Melting Onset (Solidus), °C 1040
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 310
62
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
13
Electrical Conductivity: Equal Weight (Specific), % IACS 78
13

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
55
Embodied Water, L/kg 310
370

Common Calculations

Stiffness to Weight: Axial, points 7.3
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10
12 to 25
Strength to Weight: Bending, points 12
13 to 22
Thermal Diffusivity, mm2/s 89
19
Thermal Shock Resistance, points 12
14 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.8 to 99.6
89.8 to 93
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5