MakeItFrom.com
Menu (ESC)

CC140C Copper vs. S15500 Stainless Steel

CC140C copper belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
6.8 to 16
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Tensile Strength: Ultimate (UTS), MPa 340
890 to 1490
Tensile Strength: Yield (Proof), MPa 230
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
820
Melting Completion (Liquidus), °C 1100
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 310
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 78
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
890 to 4460
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
32 to 53
Strength to Weight: Bending, points 12
26 to 37
Thermal Diffusivity, mm2/s 89
4.6
Thermal Shock Resistance, points 12
30 to 50

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.4 to 1.2
14 to 15.5
Copper (Cu), % 98.8 to 99.6
2.5 to 4.5
Iron (Fe), % 0
71.9 to 79.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030