MakeItFrom.com
Menu (ESC)

CC212E Bronze vs. Grade 9 Titanium

CC212E bronze belongs to the copper alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC212E bronze and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
110
Elongation at Break, % 20
11 to 17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 47
40
Tensile Strength: Ultimate (UTS), MPa 710
700 to 960
Tensile Strength: Yield (Proof), MPa 310
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 220
330
Melting Completion (Liquidus), °C 1080
1640
Melting Onset (Solidus), °C 1020
1590
Specific Heat Capacity, J/kg-K 440
550
Thermal Expansion, µm/m-K 18
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 27
37
Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 3.4
36
Embodied Energy, MJ/kg 55
580
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 390
1380 to 3220
Stiffness to Weight: Axial, points 8.5
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 24
43 to 60
Strength to Weight: Bending, points 21
39 to 48
Thermal Shock Resistance, points 22
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 7.0 to 9.0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 68 to 77
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 2.0 to 4.0
0 to 0.25
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 8.0 to 15
0
Nickel (Ni), % 1.5 to 4.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0
0 to 0.4