MakeItFrom.com
Menu (ESC)

CC212E Bronze vs. C15900 Copper

Both CC212E bronze and C15900 copper are copper alloys. They have 73% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC212E bronze and the bottom bar is C15900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
110
Elongation at Break, % 20
6.5
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 47
43
Tensile Strength: Ultimate (UTS), MPa 710
720
Tensile Strength: Yield (Proof), MPa 310
240

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1020
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
48
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
49

Otherwise Unclassified Properties

Base Metal Price, % relative 27
30
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 55
45
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
37
Resilience: Unit (Modulus of Resilience), kJ/m3 390
260
Stiffness to Weight: Axial, points 8.5
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 21
20
Thermal Shock Resistance, points 22
26

Alloy Composition

Aluminum (Al), % 7.0 to 9.0
0.76 to 0.84
Carbon (C), % 0
0.27 to 0.33
Copper (Cu), % 68 to 77
97.5 to 97.9
Iron (Fe), % 2.0 to 4.0
0 to 0.040
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 8.0 to 15
0
Nickel (Ni), % 1.5 to 4.5
0
Oxygen (O), % 0
0.4 to 0.54
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0.66 to 0.74
Zinc (Zn), % 0 to 1.0
0