MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. Nickel 725

CC330G bronze belongs to the copper alloys classification, while nickel 725 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 530
860
Tensile Strength: Yield (Proof), MPa 190
350

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 1050
1340
Melting Onset (Solidus), °C 1000
1270
Specific Heat Capacity, J/kg-K 430
440
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 15
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
75
Density, g/cm3 8.4
8.5
Embodied Carbon, kg CO2/kg material 3.2
13
Embodied Energy, MJ/kg 52
190
Embodied Water, L/kg 390
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
240
Resilience: Unit (Modulus of Resilience), kJ/m3 170
300
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 18
28
Strength to Weight: Bending, points 17
24
Thermal Shock Resistance, points 19
23

Alloy Composition

Aluminum (Al), % 8.0 to 10.5
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22.5
Copper (Cu), % 87 to 92
0
Iron (Fe), % 0 to 1.2
2.3 to 15.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.5
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 1.0
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
1.0 to 1.7
Zinc (Zn), % 0 to 0.5
0