MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. C22000 Bronze

Both CC330G bronze and C22000 bronze are copper alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
1.9 to 45
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 530
260 to 520
Tensile Strength: Yield (Proof), MPa 190
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 1050
1040
Melting Onset (Solidus), °C 1000
1020
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 62
190
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
44
Electrical Conductivity: Equal Weight (Specific), % IACS 15
45

Otherwise Unclassified Properties

Base Metal Price, % relative 29
29
Density, g/cm3 8.4
8.7
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 52
42
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 170
21 to 1110
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18
8.1 to 17
Strength to Weight: Bending, points 17
10 to 17
Thermal Diffusivity, mm2/s 17
56
Thermal Shock Resistance, points 19
8.8 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.0 to 10.5
0
Copper (Cu), % 87 to 92
89 to 91
Iron (Fe), % 0 to 1.2
0 to 0.050
Lead (Pb), % 0 to 0.3
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.5
8.7 to 11
Residuals, % 0
0 to 0.2