MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. C66200 Brass

Both CC330G bronze and C66200 brass are copper alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
8.0 to 15
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 530
450 to 520
Tensile Strength: Yield (Proof), MPa 190
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 1050
1070
Melting Onset (Solidus), °C 1000
1030
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 62
150
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
35
Electrical Conductivity: Equal Weight (Specific), % IACS 15
36

Otherwise Unclassified Properties

Base Metal Price, % relative 29
29
Density, g/cm3 8.4
8.7
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 52
43
Embodied Water, L/kg 390
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 170
760 to 1030
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18
14 to 17
Strength to Weight: Bending, points 17
15 to 16
Thermal Diffusivity, mm2/s 17
45
Thermal Shock Resistance, points 19
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.0 to 10.5
0
Copper (Cu), % 87 to 92
86.6 to 91
Iron (Fe), % 0 to 1.2
0 to 0.050
Lead (Pb), % 0 to 0.3
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0.3 to 1.0
Phosphorus (P), % 0
0.050 to 0.2
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.3
0.2 to 0.7
Zinc (Zn), % 0 to 0.5
6.5 to 12.9
Residuals, % 0
0 to 0.5