MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. S41050 Stainless Steel

CC330G bronze belongs to the copper alloys classification, while S41050 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 530
470
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
720
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1000
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 62
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 15
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.0
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.9
Embodied Energy, MJ/kg 52
27
Embodied Water, L/kg 390
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
98
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 17
17
Thermal Diffusivity, mm2/s 17
7.2
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 8.0 to 10.5
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 87 to 92
0
Iron (Fe), % 0 to 1.2
84.2 to 88.9
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
0.6 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.5
0