MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. EN 2.4815 Cast Nickel

CC331G bronze belongs to the copper alloys classification, while EN 2.4815 cast nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is EN 2.4815 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
3.4
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Tensile Strength: Ultimate (UTS), MPa 620
460
Tensile Strength: Yield (Proof), MPa 240
220

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1060
1510
Melting Onset (Solidus), °C 1000
1450
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 61
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
47
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 3.2
7.9
Embodied Energy, MJ/kg 53
110
Embodied Water, L/kg 390
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
13
Resilience: Unit (Modulus of Resilience), kJ/m3 250
130
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 21
15
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 17
6.4
Thermal Shock Resistance, points 22
17

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0
12 to 18
Copper (Cu), % 83 to 86.5
0
Iron (Fe), % 1.5 to 3.5
9.8 to 28.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.5
58 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0