MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. C17465 Copper

Both CC331G bronze and C17465 copper are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
5.3 to 36
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 620
310 to 930
Tensile Strength: Yield (Proof), MPa 240
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 220
210
Melting Completion (Liquidus), °C 1060
1080
Melting Onset (Solidus), °C 1000
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 61
220
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 14
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 28
45
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.2
4.1
Embodied Energy, MJ/kg 53
64
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 250
64 to 2920
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 21
9.7 to 29
Strength to Weight: Bending, points 19
11 to 24
Thermal Diffusivity, mm2/s 17
64
Thermal Shock Resistance, points 22
11 to 33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.5 to 10.5
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Copper (Cu), % 83 to 86.5
95.7 to 98.7
Iron (Fe), % 1.5 to 3.5
0 to 0.2
Lead (Pb), % 0 to 0.1
0.2 to 0.6
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 1.5
1.0 to 1.4
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5