MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. C61500 Bronze

Both CC331G bronze and C61500 bronze are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
3.0 to 55
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 620
480 to 970
Tensile Strength: Yield (Proof), MPa 240
150 to 720

Thermal Properties

Latent Heat of Fusion, J/g 230
220
Maximum Temperature: Mechanical, °C 220
220
Melting Completion (Liquidus), °C 1060
1040
Melting Onset (Solidus), °C 1000
1030
Specific Heat Capacity, J/kg-K 440
430
Thermal Conductivity, W/m-K 61
58
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
13
Electrical Conductivity: Equal Weight (Specific), % IACS 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 8.3
8.4
Embodied Carbon, kg CO2/kg material 3.2
3.2
Embodied Energy, MJ/kg 53
52
Embodied Water, L/kg 390
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
27 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 250
100 to 2310
Stiffness to Weight: Axial, points 7.6
7.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 21
16 to 32
Strength to Weight: Bending, points 19
16 to 26
Thermal Diffusivity, mm2/s 17
16
Thermal Shock Resistance, points 22
17 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.5 to 10.5
7.7 to 8.3
Copper (Cu), % 83 to 86.5
89 to 90.5
Iron (Fe), % 1.5 to 3.5
0
Lead (Pb), % 0 to 0.1
0 to 0.015
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 1.5
1.8 to 2.2
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5