MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. C85700 Brass

Both CC331G bronze and C85700 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 63% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 20
17
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 620
310
Tensile Strength: Yield (Proof), MPa 240
110

Thermal Properties

Latent Heat of Fusion, J/g 230
170
Maximum Temperature: Mechanical, °C 220
120
Melting Completion (Liquidus), °C 1060
940
Melting Onset (Solidus), °C 1000
910
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 61
84
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
22
Electrical Conductivity: Equal Weight (Specific), % IACS 14
25

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 390
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
41
Resilience: Unit (Modulus of Resilience), kJ/m3 250
59
Stiffness to Weight: Axial, points 7.6
7.2
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 21
11
Strength to Weight: Bending, points 19
13
Thermal Diffusivity, mm2/s 17
27
Thermal Shock Resistance, points 22
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.5 to 10.5
0 to 0.8
Copper (Cu), % 83 to 86.5
58 to 64
Iron (Fe), % 1.5 to 3.5
0 to 0.7
Lead (Pb), % 0 to 0.1
0.8 to 1.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 1.5
0 to 1.0
Silicon (Si), % 0 to 0.2
0 to 0.050
Tin (Sn), % 0 to 0.2
0.5 to 1.5
Zinc (Zn), % 0 to 0.5
32 to 40
Residuals, % 0
0 to 1.3