MakeItFrom.com
Menu (ESC)

CC332G Bronze vs. AWS E320LR

CC332G bronze belongs to the copper alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is CC332G bronze and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 22
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 620
580

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Melting Completion (Liquidus), °C 1060
1410
Melting Onset (Solidus), °C 1010
1360
Specific Heat Capacity, J/kg-K 440
460
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 3.4
6.2
Embodied Energy, MJ/kg 55
87
Embodied Water, L/kg 390
220

Common Calculations

Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 19
19
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 80 to 86
3.0 to 4.0
Iron (Fe), % 1.0 to 3.0
32.7 to 42.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.0
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 1.5 to 4.0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0