MakeItFrom.com
Menu (ESC)

CC332G Bronze vs. C15500 Copper

Both CC332G bronze and C15500 copper are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC332G bronze and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 22
3.0 to 37
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 620
280 to 550
Tensile Strength: Yield (Proof), MPa 250
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1060
1080
Melting Onset (Solidus), °C 1010
1080
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 45
350
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
90
Electrical Conductivity: Equal Weight (Specific), % IACS 12
91

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 55
42
Embodied Water, L/kg 390
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 270
72 to 1210
Stiffness to Weight: Axial, points 7.7
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 21
8.6 to 17
Strength to Weight: Bending, points 19
11 to 17
Thermal Diffusivity, mm2/s 12
100
Thermal Shock Resistance, points 21
9.8 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.5 to 10.5
0
Copper (Cu), % 80 to 86
99.75 to 99.853
Iron (Fe), % 1.0 to 3.0
0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0.080 to 0.13
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 1.5 to 4.0
0
Phosphorus (P), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.2
0
Silver (Ag), % 0
0.027 to 0.1
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.2