MakeItFrom.com
Menu (ESC)

CC332G Bronze vs. C87400 Brass

Both CC332G bronze and C87400 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC332G bronze and the bottom bar is C87400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 22
21
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 620
390
Tensile Strength: Yield (Proof), MPa 250
160

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1060
920
Melting Onset (Solidus), °C 1010
820
Specific Heat Capacity, J/kg-K 440
400
Thermal Conductivity, W/m-K 45
28
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
27
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 55
44
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
65
Resilience: Unit (Modulus of Resilience), kJ/m3 270
120
Stiffness to Weight: Axial, points 7.7
7.4
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 21
13
Strength to Weight: Bending, points 19
14
Thermal Diffusivity, mm2/s 12
8.3
Thermal Shock Resistance, points 21
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.5 to 10.5
0 to 0.8
Copper (Cu), % 80 to 86
79 to 85.5
Iron (Fe), % 1.0 to 3.0
0
Lead (Pb), % 0 to 0.1
0 to 1.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 1.5 to 4.0
0
Silicon (Si), % 0 to 0.2
2.5 to 4.0
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
12 to 16
Residuals, % 0
0 to 0.8