MakeItFrom.com
Menu (ESC)

CC332G Bronze vs. C87700 Bronze

Both CC332G bronze and C87700 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC332G bronze and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 22
3.6
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 620
300
Tensile Strength: Yield (Proof), MPa 250
120

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 1060
980
Melting Onset (Solidus), °C 1010
900
Specific Heat Capacity, J/kg-K 440
400
Thermal Conductivity, W/m-K 45
120
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
45
Electrical Conductivity: Equal Weight (Specific), % IACS 12
48

Otherwise Unclassified Properties

Base Metal Price, % relative 29
29
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 55
45
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 270
64
Stiffness to Weight: Axial, points 7.7
7.4
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 21
9.8
Strength to Weight: Bending, points 19
12
Thermal Diffusivity, mm2/s 12
34
Thermal Shock Resistance, points 21
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.5 to 10.5
0
Antimony (Sb), % 0
0 to 0.1
Copper (Cu), % 80 to 86
87.5 to 90.5
Iron (Fe), % 1.0 to 3.0
0 to 0.5
Lead (Pb), % 0 to 0.1
0 to 0.090
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.0
0 to 0.8
Nickel (Ni), % 1.5 to 4.0
0 to 0.25
Phosphorus (P), % 0
0 to 0.15
Silicon (Si), % 0 to 0.2
2.5 to 3.5
Tin (Sn), % 0 to 0.2
0 to 2.0
Zinc (Zn), % 0 to 0.5
7.0 to 9.0
Residuals, % 0
0 to 0.8