MakeItFrom.com
Menu (ESC)

CC333G Bronze vs. 204.0 Aluminum

CC333G bronze belongs to the copper alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC333G bronze and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
90 to 120
Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 13
5.7 to 7.8
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 45
27
Tensile Strength: Ultimate (UTS), MPa 710
230 to 340
Tensile Strength: Yield (Proof), MPa 310
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 230
390
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 1080
650
Melting Onset (Solidus), °C 1020
580
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 38
120
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 3.5
8.0
Embodied Energy, MJ/kg 56
150
Embodied Water, L/kg 380
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 410
220 to 350
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
46
Strength to Weight: Axial, points 24
21 to 31
Strength to Weight: Bending, points 21
28 to 36
Thermal Diffusivity, mm2/s 10
46
Thermal Shock Resistance, points 24
12 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.5 to 10.5
93.4 to 95.5
Bismuth (Bi), % 0 to 0.010
0
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 76 to 83
4.2 to 5.0
Iron (Fe), % 3.0 to 5.5
0 to 0.35
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0 to 0.050
0.15 to 0.35
Manganese (Mn), % 0 to 3.0
0 to 0.1
Nickel (Ni), % 3.7 to 6.0
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.2
Tin (Sn), % 0 to 0.1
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0
0 to 0.15