MakeItFrom.com
Menu (ESC)

CC333G Bronze vs. ASTM A182 Grade F3V

CC333G bronze belongs to the copper alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC333G bronze and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
74
Tensile Strength: Ultimate (UTS), MPa 710
660
Tensile Strength: Yield (Proof), MPa 310
470

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
470
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 38
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.2
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.5
2.3
Embodied Energy, MJ/kg 56
33
Embodied Water, L/kg 380
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
120
Resilience: Unit (Modulus of Resilience), kJ/m3 410
590
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 10
10
Thermal Shock Resistance, points 24
19

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0 to 0.050
2.8 to 3.2
Copper (Cu), % 76 to 83
0
Iron (Fe), % 3.0 to 5.5
94.4 to 95.7
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 3.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 3.7 to 6.0
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.5
0