MakeItFrom.com
Menu (ESC)

CC334G Bronze vs. AWS BNi-9

CC334G bronze belongs to the copper alloys classification, while AWS BNi-9 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is CC334G bronze and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 45
72
Tensile Strength: Ultimate (UTS), MPa 810
580

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Melting Completion (Liquidus), °C 1080
1060
Melting Onset (Solidus), °C 1020
1060
Specific Heat Capacity, J/kg-K 450
480
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.2
8.4
Embodied Carbon, kg CO2/kg material 3.6
9.3
Embodied Energy, MJ/kg 59
130
Embodied Water, L/kg 390
260

Common Calculations

Stiffness to Weight: Axial, points 8.1
12
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
18
Thermal Shock Resistance, points 28
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 10 to 12
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 72 to 84.5
0
Iron (Fe), % 3.0 to 7.0
0 to 1.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.5
0
Nickel (Ni), % 4.0 to 7.5
77.1 to 83.3
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5