MakeItFrom.com
Menu (ESC)

CC334G Bronze vs. EN 1.7233 Steel

CC334G bronze belongs to the copper alloys classification, while EN 1.7233 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC334G bronze and the bottom bar is EN 1.7233 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
210 to 290
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.6
18 to 23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 810
700 to 960
Tensile Strength: Yield (Proof), MPa 410
380 to 780

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 240
430
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 41
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.6
Embodied Energy, MJ/kg 59
21
Embodied Water, L/kg 390
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 710
380 to 1630
Stiffness to Weight: Axial, points 8.1
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 28
25 to 34
Strength to Weight: Bending, points 24
22 to 28
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 28
21 to 28

Alloy Composition

Aluminum (Al), % 10 to 12
0
Carbon (C), % 0
0.39 to 0.45
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 72 to 84.5
0
Iron (Fe), % 3.0 to 7.0
96.2 to 97.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.5
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Nickel (Ni), % 4.0 to 7.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0