MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. ASTM A387 Grade 11 Steel

CC380H copper-nickel belongs to the copper alloys classification, while ASTM A387 grade 11 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is ASTM A387 grade 11 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 26
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 47
73
Tensile Strength: Ultimate (UTS), MPa 310
500 to 600
Tensile Strength: Yield (Proof), MPa 120
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Maximum Temperature: Mechanical, °C 220
430
Melting Completion (Liquidus), °C 1130
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 46
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.6
Embodied Energy, MJ/kg 58
21
Embodied Water, L/kg 300
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
100 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 59
200 to 320
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
18 to 21
Strength to Weight: Bending, points 12
18 to 20
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 11
15 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 84.5 to 89
0
Iron (Fe), % 1.0 to 1.8
96.2 to 97.6
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0.5 to 0.8
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.5
0