MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. C43500 Brass

Both CC380H copper-nickel and C43500 brass are copper alloys. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 26
8.5 to 46
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 47
42
Tensile Strength: Ultimate (UTS), MPa 310
320 to 530
Tensile Strength: Yield (Proof), MPa 120
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 220
190
Maximum Temperature: Mechanical, °C 220
160
Melting Completion (Liquidus), °C 1130
1000
Melting Onset (Solidus), °C 1080
970
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 46
120
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
28
Electrical Conductivity: Equal Weight (Specific), % IACS 11
30

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 58
45
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 59
65 to 1040
Stiffness to Weight: Axial, points 7.8
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 9.8
10 to 17
Strength to Weight: Bending, points 12
12 to 17
Thermal Diffusivity, mm2/s 13
37
Thermal Shock Resistance, points 11
11 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Copper (Cu), % 84.5 to 89
79 to 83
Iron (Fe), % 1.0 to 1.8
0 to 0.050
Lead (Pb), % 0 to 0.030
0 to 0.090
Manganese (Mn), % 1.0 to 1.5
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
0.6 to 1.2
Zinc (Zn), % 0 to 0.5
15.4 to 20.4
Residuals, % 0
0 to 0.3