MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. EN 1.1165 Cast Steel

CC381H copper-nickel belongs to the copper alloys classification, while EN 1.1165 cast steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is EN 1.1165 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 20
11 to 20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
73
Tensile Strength: Ultimate (UTS), MPa 380
600 to 780
Tensile Strength: Yield (Proof), MPa 140
290 to 620

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 260
400
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 30
51
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.0
1.4
Embodied Energy, MJ/kg 73
19
Embodied Water, L/kg 280
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 68
230 to 1010
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
21 to 28
Strength to Weight: Bending, points 13
20 to 24
Thermal Diffusivity, mm2/s 8.4
14
Thermal Shock Resistance, points 13
19 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0.25 to 0.32
Copper (Cu), % 64.5 to 69.9
0
Iron (Fe), % 0.5 to 1.5
97.2 to 98.6
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
1.2 to 1.8
Nickel (Ni), % 29 to 31
0
Phosphorus (P), % 0 to 0.010
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Zinc (Zn), % 0 to 0.5
0