MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. Grade 32 Titanium

CC381H copper-nickel belongs to the copper alloys classification, while grade 32 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is grade 32 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
110
Elongation at Break, % 20
11
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 52
40
Tensile Strength: Ultimate (UTS), MPa 380
770
Tensile Strength: Yield (Proof), MPa 140
670

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 260
310
Melting Completion (Liquidus), °C 1180
1610
Melting Onset (Solidus), °C 1120
1560
Specific Heat Capacity, J/kg-K 410
550
Thermal Conductivity, W/m-K 30
7.5
Thermal Expansion, µm/m-K 16
8.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 40
38
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.0
32
Embodied Energy, MJ/kg 73
530
Embodied Water, L/kg 280
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
83
Resilience: Unit (Modulus of Resilience), kJ/m3 68
2100
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 12
47
Strength to Weight: Bending, points 13
41
Thermal Diffusivity, mm2/s 8.4
3.0
Thermal Shock Resistance, points 13
63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
4.5 to 5.5
Carbon (C), % 0 to 0.030
0 to 0.080
Copper (Cu), % 64.5 to 69.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 1.5
0 to 0.25
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
0
Molybdenum (Mo), % 0
0.6 to 1.2
Nickel (Ni), % 29 to 31
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.11
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0.060 to 0.14
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.6 to 1.4
Titanium (Ti), % 0
88.1 to 93
Vanadium (V), % 0
0.6 to 1.4
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0.6 to 1.4
Residuals, % 0
0 to 0.4