MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. C71520 Copper-nickel

Both CC381H copper-nickel and C71520 copper-nickel are copper alloys. They have a very high 99% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
140
Elongation at Break, % 20
10 to 45
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 52
51
Tensile Strength: Ultimate (UTS), MPa 380
370 to 570
Tensile Strength: Yield (Proof), MPa 140
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 240
230
Maximum Temperature: Mechanical, °C 260
260
Melting Completion (Liquidus), °C 1180
1170
Melting Onset (Solidus), °C 1120
1120
Specific Heat Capacity, J/kg-K 410
400
Thermal Conductivity, W/m-K 30
32
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 40
40
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 5.0
5.0
Embodied Energy, MJ/kg 73
73
Embodied Water, L/kg 280
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 68
67 to 680
Stiffness to Weight: Axial, points 8.6
8.6
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 12
12 to 18
Strength to Weight: Bending, points 13
13 to 17
Thermal Diffusivity, mm2/s 8.4
8.9
Thermal Shock Resistance, points 13
12 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.050
Copper (Cu), % 64.5 to 69.9
65 to 71.6
Iron (Fe), % 0.5 to 1.5
0.4 to 1.0
Lead (Pb), % 0 to 0.030
0 to 0.020
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Nickel (Ni), % 29 to 31
28 to 33
Phosphorus (P), % 0 to 0.010
0 to 0.2
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0 to 0.020
Zinc (Zn), % 0 to 0.5
0 to 0.5
Residuals, % 0
0 to 0.5