MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. S64512 Stainless Steel

CC381H copper-nickel belongs to the copper alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
330
Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 20
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
76
Tensile Strength: Ultimate (UTS), MPa 380
1140
Tensile Strength: Yield (Proof), MPa 140
890

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 260
750
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 30
28
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 40
10
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.0
3.3
Embodied Energy, MJ/kg 73
47
Embodied Water, L/kg 280
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
180
Resilience: Unit (Modulus of Resilience), kJ/m3 68
2020
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
40
Strength to Weight: Bending, points 13
31
Thermal Diffusivity, mm2/s 8.4
7.5
Thermal Shock Resistance, points 13
42

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 64.5 to 69.9
0
Iron (Fe), % 0.5 to 1.5
80.6 to 84.7
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 29 to 31
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.025
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.5
0