MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. 6005 Aluminum

CC382H copper-nickel belongs to the copper alloys classification, while 6005 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
90 to 95
Elastic (Young's, Tensile) Modulus, GPa 140
68
Elongation at Break, % 20
9.5 to 17
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 53
26
Tensile Strength: Ultimate (UTS), MPa 490
190 to 310
Tensile Strength: Yield (Proof), MPa 290
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 260
160
Melting Completion (Liquidus), °C 1180
650
Melting Onset (Solidus), °C 1120
610
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 30
180 to 200
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
54
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 5.2
8.3
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 290
77 to 550
Stiffness to Weight: Axial, points 8.8
14
Stiffness to Weight: Bending, points 20
51
Strength to Weight: Axial, points 15
20 to 32
Strength to Weight: Bending, points 16
28 to 38
Thermal Diffusivity, mm2/s 8.2
74 to 83
Thermal Shock Resistance, points 16
8.6 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
97.5 to 99
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0 to 0.1
Copper (Cu), % 62.8 to 68.4
0 to 0.1
Iron (Fe), % 0.5 to 1.0
0 to 0.35
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0 to 0.010
0.4 to 0.6
Manganese (Mn), % 0.5 to 1.0
0 to 0.1
Nickel (Ni), % 29 to 32
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0.6 to 0.9
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15