MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. AWS ER100S-1

CC382H copper-nickel belongs to the copper alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 20
18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
73
Tensile Strength: Ultimate (UTS), MPa 490
770
Tensile Strength: Yield (Proof), MPa 290
700

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 30
49
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 41
3.6
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.2
1.8
Embodied Energy, MJ/kg 76
24
Embodied Water, L/kg 290
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
130
Resilience: Unit (Modulus of Resilience), kJ/m3 290
1290
Stiffness to Weight: Axial, points 8.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15
27
Strength to Weight: Bending, points 16
24
Thermal Diffusivity, mm2/s 8.2
13
Thermal Shock Resistance, points 16
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0 to 0.1
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 1.5 to 2.0
0 to 0.3
Copper (Cu), % 62.8 to 68.4
0 to 0.25
Iron (Fe), % 0.5 to 1.0
93.5 to 96.9
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 29 to 32
1.4 to 2.1
Phosphorus (P), % 0 to 0.010
0 to 0.010
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0.2 to 0.55
Sulfur (S), % 0 to 0.010
0 to 0.010
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.15
0 to 0.1
Residuals, % 0
0 to 0.5