MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. C28500 Muntz Metal

Both CC382H copper-nickel and C28500 Muntz Metal are copper alloys. They have 58% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is C28500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
100
Elongation at Break, % 20
20
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 53
40
Tensile Strength: Ultimate (UTS), MPa 490
520
Tensile Strength: Yield (Proof), MPa 290
380

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 260
110
Melting Completion (Liquidus), °C 1180
900
Melting Onset (Solidus), °C 1120
890
Specific Heat Capacity, J/kg-K 410
390
Thermal Conductivity, W/m-K 30
100
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
29
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
33

Otherwise Unclassified Properties

Base Metal Price, % relative 41
22
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.2
2.7
Embodied Energy, MJ/kg 76
46
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
94
Resilience: Unit (Modulus of Resilience), kJ/m3 290
700
Stiffness to Weight: Axial, points 8.8
7.3
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 8.2
33
Thermal Shock Resistance, points 16
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0
Copper (Cu), % 62.8 to 68.4
57 to 59
Iron (Fe), % 0.5 to 1.0
0 to 0.35
Lead (Pb), % 0 to 0.0050
0 to 0.25
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 29 to 32
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
39.5 to 43
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.9