MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. C35300 Brass

Both CC382H copper-nickel and C35300 brass are copper alloys. They have 62% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is C35300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
100
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 53
39
Tensile Strength: Ultimate (UTS), MPa 490
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 260
120
Melting Completion (Liquidus), °C 1180
910
Melting Onset (Solidus), °C 1120
890
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 30
120
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 41
23
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 5.2
2.6
Embodied Energy, MJ/kg 76
45
Embodied Water, L/kg 290
320

Common Calculations

Stiffness to Weight: Axial, points 8.8
7.1
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 15
12 to 22
Strength to Weight: Bending, points 16
13 to 21
Thermal Diffusivity, mm2/s 8.2
38
Thermal Shock Resistance, points 16
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0
Copper (Cu), % 62.8 to 68.4
60 to 63
Iron (Fe), % 0.5 to 1.0
0 to 0.1
Lead (Pb), % 0 to 0.0050
1.5 to 2.5
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 29 to 32
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
33.9 to 38.5
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5