MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. C99500 Copper

Both CC382H copper-nickel and C99500 copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 72% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 20
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 53
45
Tensile Strength: Ultimate (UTS), MPa 490
540
Tensile Strength: Yield (Proof), MPa 290
310

Thermal Properties

Latent Heat of Fusion, J/g 240
240
Maximum Temperature: Mechanical, °C 260
210
Melting Completion (Liquidus), °C 1180
1090
Melting Onset (Solidus), °C 1120
1040
Specific Heat Capacity, J/kg-K 410
400
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 41
30
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 5.2
3.0
Embodied Energy, MJ/kg 76
47
Embodied Water, L/kg 290
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
63
Resilience: Unit (Modulus of Resilience), kJ/m3 290
410
Stiffness to Weight: Axial, points 8.8
7.7
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 15
17
Strength to Weight: Bending, points 16
17
Thermal Shock Resistance, points 16
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0.5 to 2.0
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0
Copper (Cu), % 62.8 to 68.4
82.5 to 92
Iron (Fe), % 0.5 to 1.0
3.0 to 5.0
Lead (Pb), % 0 to 0.0050
0 to 0.25
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
0 to 0.5
Nickel (Ni), % 29 to 32
3.5 to 5.5
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0.5 to 2.0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0.5 to 2.0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.3