MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. Grade Ti-Pd17 Titanium

CC383H copper-nickel belongs to the copper alloys classification, while grade Ti-Pd17 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is grade Ti-Pd17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
200
Elastic (Young's, Tensile) Modulus, GPa 140
110
Elongation at Break, % 20
22
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 52
40
Tensile Strength: Ultimate (UTS), MPa 490
270
Tensile Strength: Yield (Proof), MPa 260
190

Thermal Properties

Latent Heat of Fusion, J/g 240
420
Maximum Temperature: Mechanical, °C 260
320
Melting Completion (Liquidus), °C 1180
1660
Melting Onset (Solidus), °C 1130
1610
Specific Heat Capacity, J/kg-K 410
540
Thermal Conductivity, W/m-K 29
21
Thermal Expansion, µm/m-K 15
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
7.1

Otherwise Unclassified Properties

Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.7
36
Embodied Energy, MJ/kg 83
600
Embodied Water, L/kg 280
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
55
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15
17
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 8.1
8.8
Thermal Shock Resistance, points 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0 to 0.1
Copper (Cu), % 64 to 69.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 1.5
0 to 0.2
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0 to 0.030
Niobium (Nb), % 0.5 to 1.0
0
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.010
0
Titanium (Ti), % 0
98.9 to 99.96
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4