MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. C11100 Copper

Both CC383H copper-nickel and C11100 copper are copper alloys. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 20
1.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 52
44
Tensile Strength: Ultimate (UTS), MPa 490
460
Tensile Strength: Yield (Proof), MPa 260
420

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 260
200
Melting Completion (Liquidus), °C 1180
1080
Melting Onset (Solidus), °C 1130
1070
Specific Heat Capacity, J/kg-K 410
390
Thermal Conductivity, W/m-K 29
390
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
100
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
100

Otherwise Unclassified Properties

Base Metal Price, % relative 44
31
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 5.7
2.6
Embodied Energy, MJ/kg 83
41
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 250
750
Stiffness to Weight: Axial, points 8.6
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 15
14
Strength to Weight: Bending, points 16
15
Thermal Diffusivity, mm2/s 8.1
110
Thermal Shock Resistance, points 17
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 64 to 69.1
99.9 to 100
Iron (Fe), % 0.5 to 1.5
0
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0
Niobium (Nb), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.010
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.1