MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. N06455 Nickel

CC383H copper-nickel belongs to the copper alloys classification, while N06455 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is N06455 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Elongation at Break, % 20
47
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
82
Tensile Strength: Ultimate (UTS), MPa 490
780
Tensile Strength: Yield (Proof), MPa 260
330

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 260
960
Melting Completion (Liquidus), °C 1180
1510
Melting Onset (Solidus), °C 1130
1450
Specific Heat Capacity, J/kg-K 410
430
Thermal Conductivity, W/m-K 29
10
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 44
65
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 5.7
12
Embodied Energy, MJ/kg 83
160
Embodied Water, L/kg 280
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
300
Resilience: Unit (Modulus of Resilience), kJ/m3 250
260
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 8.1
2.7
Thermal Shock Resistance, points 17
24

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0 to 0.015
Chromium (Cr), % 0
14 to 18
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 64 to 69.1
0
Iron (Fe), % 0.5 to 1.5
0 to 3.0
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
14 to 17
Nickel (Ni), % 29 to 31
58.1 to 72
Niobium (Nb), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0 to 0.080
Sulfur (S), % 0 to 0.010
0 to 0.030
Tellurium (Te), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 0 to 0.5
0