MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. AISI 334 Stainless Steel

CC480K bronze belongs to the copper alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 88
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 300
540
Tensile Strength: Yield (Proof), MPa 180
190

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 1010
1410
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 370
480
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 35
22
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
4.1
Embodied Energy, MJ/kg 59
59
Embodied Water, L/kg 390
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
140
Resilience: Unit (Modulus of Resilience), kJ/m3 140
96
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6
19
Strength to Weight: Bending, points 11
19
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.15 to 0.6
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.2
55.7 to 62.7
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 2.0
19 to 21
Phosphorus (P), % 0 to 0.2
0 to 0.030
Silicon (Si), % 0 to 0.020
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 0.5
0