MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. ASTM B817 Type I

CC480K bronze belongs to the copper alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 13
4.0 to 13
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 300
770 to 960
Tensile Strength: Yield (Proof), MPa 180
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 1010
1600
Melting Onset (Solidus), °C 900
1550
Specific Heat Capacity, J/kg-K 370
560
Thermal Conductivity, W/m-K 63
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 35
36
Density, g/cm3 8.8
4.4
Embodied Carbon, kg CO2/kg material 3.7
38
Embodied Energy, MJ/kg 59
610
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
2310 to 3540
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 9.6
48 to 60
Strength to Weight: Bending, points 11
42 to 49
Thermal Diffusivity, mm2/s 20
2.9
Thermal Shock Resistance, points 11
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
5.5 to 6.8
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 86 to 90
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.4
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 2.0
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 0.020
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4