MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. EN 1.4600 Stainless Steel

CC480K bronze belongs to the copper alloys classification, while EN 1.4600 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is EN 1.4600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 300
580
Tensile Strength: Yield (Proof), MPa 180
430

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
730
Melting Completion (Liquidus), °C 1010
1440
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 63
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 35
7.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.0
Embodied Energy, MJ/kg 59
28
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
470
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6
21
Strength to Weight: Bending, points 11
20
Thermal Diffusivity, mm2/s 20
7.3
Thermal Shock Resistance, points 11
21

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.2
82 to 87.7
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0 to 0.1
1.0 to 2.5
Nickel (Ni), % 0 to 2.0
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.2
0 to 0.040
Silicon (Si), % 0 to 0.020
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.5
0