MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. C41500 Brass

Both CC480K bronze and C41500 brass are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
2.0 to 42
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 300
340 to 560
Tensile Strength: Yield (Proof), MPa 180
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1010
1030
Melting Onset (Solidus), °C 900
1010
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 63
120
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
28
Electrical Conductivity: Equal Weight (Specific), % IACS 11
29

Otherwise Unclassified Properties

Base Metal Price, % relative 35
30
Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 59
45
Embodied Water, L/kg 390
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
160 to 1340
Stiffness to Weight: Axial, points 6.9
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6
11 to 18
Strength to Weight: Bending, points 11
12 to 17
Thermal Diffusivity, mm2/s 20
37
Thermal Shock Resistance, points 11
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 90
89 to 93
Iron (Fe), % 0 to 0.2
0 to 0.050
Lead (Pb), % 0 to 1.0
0 to 0.1
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 0.020
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
1.5 to 2.2
Zinc (Zn), % 0 to 0.5
4.2 to 9.5
Residuals, % 0
0 to 0.5